Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection.

نویسندگان

  • Estelle Crozat
  • Nadège Philippe
  • Richard E Lenski
  • Johannes Geiselmann
  • Dominique Schneider
چکیده

The genetic bases of adaptation are being investigated in 12 populations of Escherichia coli, founded from a common ancestor and serially propagated for 20,000 generations, during which time they achieved substantial fitness gains. Each day, populations alternated between active growth and nutrient exhaustion. DNA supercoiling in bacteria is influenced by nutritional state, and DNA topology helps coordinate the overall pattern of gene expression in response to environmental changes. We therefore examined whether the genetic controls over supercoiling might have changed during the evolution experiment. Parallel changes in topology occurred in most populations, with the level of DNA supercoiling increasing, usually in the first 2000 generations. Two mutations in the topA and fis genes that control supercoiling were discovered in a population that served as the focus for further investigation. Moving the mutations, alone and in combination, into the ancestral background had an additive effect on supercoiling, and together they reproduced the net change in DNA topology observed in this population. Moreover, both mutations were beneficial in competition experiments. Clonal interference involving other beneficial DNA topology mutations was also detected. These findings define a new class of fitness-enhancing mutations and indicate that the control of DNA supercoiling can be a key target of selection in evolving bacterial populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli

Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...

متن کامل

Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli

Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...

متن کامل

Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by ext...

متن کامل

Cloning and sequencing of ompf Salmonella typhi Salmonella ompf gene in Escherichia coli Origami

Background and Aim: Salmonella Typhi belongs to the family Enterobacteriaceae, gram-negative bacilli and causes gastrointestinal diseases such as typhoid. This bacterium has a special structure and various genes, including the ompf gene (outer membrane protein). Recent studies have shown the possibility of using ompf in the development of a diagnostic tuberculosis vaccine. Therefore, the aim of...

متن کامل

Parallel genetic and phenotypic evolution of DNA superhelicity in experimental populations of Escherichia coli.

DNA supercoiling is the master function that interconnects chromosome structure and global gene transcription. This function has recently been shown to be under strong selection in Escherichia coli. During the evolution of 12 initially identical populations propagated in a defined environment for 20,000 generations, parallel increases in DNA supercoiling were observed in ten populations. The ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 169 2  شماره 

صفحات  -

تاریخ انتشار 2005